Surveillance Summary

EPI Week 39 Target Species Surveillance Summary				Cumulative Totals: EPI Weeks 24-39				
Species	#	Pools	WNV+	EEEV+	Cumulative	Cumulative	Cumulative	Cumulative
	Collected				Specimens	Pools	WNV+	EEEV+
Cx. pipiens/restuans	58	3	0	0	11353	333	51	0
Cq. perturbans	0	0	0	0	3758	128	0	0
Cs. melanura	2	2	0	0	44	22	0	0
Oc. canadensis	0	0	0	0	954	34	0	0
Oc. japonicus	88	6	0	0	1791	103	0	0
Ps. ferox	0	0	0	0	68	0	0	0
An. quadrimaculatus	2	0	0	0	234	5	0	0
Ae. vexans	0	0	0	0	170	11	0	0
Ae. albopictus	0	0	0	0	25	1	0	0
Cx. salinarius	0	0	0	0	527	23	2	0
An. punctipennis	1	0	0	0	742	3	0	0
Cx. erraticus	0	0	0	0	1640	5	0	0
Ur. sapphirina	1	0	0	0	34	1	0	0
Totals	151	11	0	0	21340	669	53	0

Positive Mosquito Samples in the Pioneer Valley Region

• There were no additional positive samples confirmed during EPI week 39. See statewide cumulative results here and updated risk maps here.

Most Abundant Species in Pioneer Valley

• Among the species of most concern, Oc. *japonicus* were the the most prevalent, with a total of **88** specimens collected during EPI week 39. Oc. *japonicus* has been implicated as a bridge vector for both EEE and WNV. Oc. *japonicus* can be found in discarded tires and other artificial containers.

Oc. japonicus adult female.

EPI WK 39 Summary by County

- Franklin County
 - o Pools Tested: 1
 - o Positive Samples: 0
 - Most Abundant Species:
 Cx. pipiens/restuans (8)
 - Total Mosquitoes
 Collected: 35

Hampden County

- o Pools Tested: 4
- o Positive Samples: 0
- Most Abundant Species:
 Oc. japonicus (19)
- Total MosquitoesCollected: 30

Hampshire County

- o Pools Tested: 6
- Positive Samples: 0
- Most Abundant Species:
 Cx. pipiens/restuans (33)
- Total Mosquitoes
 Collected: 97
- Total Mosquitoes Collected in All Counties: 162 (Total Includes Non-Target Species)
- Total Pools Submitted for Testing in All Counties: 11

Weekly Collection Totals by County

1600

1400

1200

1000

800

600

400

200

EPI WK EPI WK

Statewide Cumulative Arbovirus Positives as of 9/26/25

Virus	Positive Mosquito Samples	Animal Cases	Human Cases
EEE	23	0	0
WNV	451	1	8

Onset	County	Age Range	nge Sex Illness	
8/11/25	Hampden	40-49	Male	Meningitis
8/15/25	Middlesex	70-79	Female	Encephalitis
8/21/25	Worcester	60-69	Male	Non-neuroinvasive (WNV fever)
8/22/25	Essex	60-69	Female	Meningoencephalitis
8/22/25	Middlesex	80-89	Male	Meningoencephalitis
8/30/25	Worcester	60-69	Male	Meningoencephalitis
9/9/25	Middlesex	60-69	Female	Meningitis
9/12/25	Suffolk	50-59	Male	Other Neuroinvasive

See description of targeted mosquito species <u>here</u>.

EEE Risk Map as of 10/3/25

Current EEE Risk Map from: https://www.mass.gov/info-details/massachusetts-arbovirus-update

WNV Risk Map as of 10/3/25

Current WNV Risk Map From: https://www.mass.gov/info-details/massachusetts-arbovirus-update

Bite Prevention - Mosquitoes and Ticks

Mosquitoes and ticks can transmit serious diseases, but taking protective measures can go a long way in preventing bites from these common vectors.

Personal Protection Tips

- **Use insect repellent:** Use EPA approved insect repellent with one of the following ingredients: DEET, picaridin, or oil of lemon eucalyptus to keep bugs off.
- **Be mindful of timing and environment:** Mosquitoes are busiest at dawn and dusk, while ticks hide in brushy areas all day. During the colder months, ticks will overwinter in mostly leaf litter and will seek out a blood meal on a warm winter day.
- **Wear proper clothing:** Long sleeves, pants, and shoes help prevent mosquito bites. Although it's not much of a fashion statement, tucking your pants into your socks prevents ticks from migrating up your leg and biting you.
- **Treat your clothes:** Spray gear and clothing with permethrin for extra protection against ticks. Note, permethrin is a pesticide and should be used with caution. Read all product labels before use.
- Tick check: Look over your skin, clothes, and pets carefully after spending time outside.
- Dry your clothes on high heat: Ticks can survive a wash cycle, but 10 minutes in a hot dryer will kill them.
- **If possible, take a shower within two hours:** It helps wash off unattached ticks before they can latch on. This is also a good opportunity to look over your skin again.

Around the Home

- **Prevent artificial habitat:** Mosquitoes will seek out water-filled containers to lay their eggs in, so empty buckets, birdbaths, kiddy pools, tarps, etc. Clear gutters of debris regularly and dispose of old tires to prevent mosquito breeding.
- Fix doors and screens: Keep mosquitoes out by inspecting and repairing window screens.
- Make a tick-safe yard: Maintain short grass, remove leaf litter, and place a barrier of gravel between wooded areas and the edges of your lawn.

PE Poster Printouts and Helpful Links

- Mosquito Bite Prevention Poster
- Arbovirus Transmission Cycles
- Reducing Mosquito Breeding Sites
- CDC Dengue Fever Information
- DPH Mosquito PE Materials: https://www.mass.gov/lists/mosquito-borne-disease-educational-materials
- DPH Tick PE Materials: https://www.mass.gov/info-details/tick-borne-educational-materials

Targeted Mosquito Species

Species Name	Description	Habitat	Months Active
Aedes albopictus	An invasive species that is an aggressive and relentless day biter. Ae. <i>albopictus</i> prefer to feed on humans and can transmit chikungunya, dengue, and Zika.	Discarded tires and other containers.	June-October Peak: July
Aedes vexans	An aggressive biter that falls within the "flood water" species. Ae. <i>vexans</i> is a bridge vector for EEE and will feed on both birds and mammals.	Temporary freshwater pools such as flood meadows, retention ponds, and vernal pools.	May-October Peak: Varies and is dependent on precipitation.
Culiseta melanura	Cs. <i>melanura</i> mosquitoes are a primary vector for EEE. Cs. <i>melanura</i> feed mainly on avian species and are responsible for amplifying the virus to the point that it spills over into bridge vectors.	Tree root cavities or "crypts" covered by peat moss in red maple and cedar swamps.	May-December Peak: July-August and mid-September
Culex <i>pipiens</i> and <i>restuans</i>	These two mosquito species are abundant in Massachusetts and can amplify WNV in the bird population and infect humans. While Cx. <i>pipiens</i> is more implicated in WNV transmission, both Cx. <i>pipiens</i> and <i>restuans</i> are grouped together because differentiating between the two species with 100% reliability if very difficult.	Artificial containers such as "green" swimming pools, catch basins, discarded tires, buckets, etc.	May-October Peak: July-August
Coquillettidia perturbans	Cq. <i>perturbans</i> is one of the most abundant mosquitoes in Massachusetts and are considered a competent bridge vector for both EEE and WNV. Cq. <i>pertubans</i> will feed on both birds (reservoir for EEE) and mammals.	Permanent bodies of water with emergent vegetation such at cattails.	May-September Peak: July
Ochlerotatus canadensis	Oc. <i>canadensis</i> , is a bridge vector that can transmit both EEE and WNV to humans.	Woodland/vernal pools.	May-October Peak: June
Ochlerotatus japonicus	An invasive species that is a potential bridge vector for WNV and EEE.	Discarded tires and other containers	May-October Peak:
Culex salinarius	Cx. salinarius are considered bridge vectors for both EEE and WNV, readily feeding on mammals.	Brackish and freshwater swamps.	May-November Peak: August
Other species	There are many other species that PVMCD staff will submit to the Arbovirus Surveillance Laboratory at DPH for testing. These species are considered potential vectors in transmitting arboviruses.		